

图 2-2

2、直线圆弧插补

对用户来说只用一条指令即可实现插补运算,直线插补即指令 LINEAR,圆弧插补即指令 CIRCLE,但需要确定插补平面。注意,在进行圆弧插补时参数 I13 必须大于 0。具体详情参见 PMAC 软件手册。

1)、 怎样确定插补平面:用指令 NORMAL 确定插补平面:

语法: NORMAL {VECTOR}{DATA}

其中 VECTOR 是 I, J, K 字母中的一个, 分别代表与 X, Y, Z 平行的方向, PMAC 采用右手法则, 所谓右手法则即右手螺旋, 大拇指所指方向是 NORMAL 所指方向, 其余四指环绕方向是顺圆指令方向。如图 2-3 所示: NORMAL K-1 表示 XY 平面, 大拇指方向与标准 Z 轴矢量反向;

2

NORMAL J-1 表示 ZX 平面,大拇指方向与标准 Y 轴矢量反向; NORMAL I-1 表示 ZY 平面,大拇指方向与标准 X 轴矢量反向; 具体图例参考 PMAC 用户手册:

2)、 怎样执行圆弧及直线插补命令:

圆弧和直线插补都可以是指定速率(F)的,也可以是指定时间的(TM,如上一 实验中的实验例子程序)。在圆弧插补中,指令 CIRCLE1 表示顺圆插补,指令 CIRCLE2 表示逆圆插补,具体过程实验例子程序。

3)、 怎样定位圆弧中心:

要进行圆弧插补,除了须定义插补平面外,还须定义圆弧中心。定位圆弧中心有 两种模式,一种是矢量模式,一种是半径模式,以下分别介绍。

矢量模式,见图 2-3:

矢量模式需给出四个参数,即终点坐标和圆心坐标,图 2-4 给出了增量式和绝对式四个参数的确定。注意,在标准的机床加工代码中,尽管终点坐标是以绝对式给出的,但圆心矢量坐标仍然以增量式给出。

例子: CIRCLE1

X20 Y20 I20 J0

半径模式:

半径模式只需给出三个参数,即终点坐标和半径(用命令 R 表示), R 可以是负值, 正值表示走一段优弧(即<=180 度),负值表示走一段劣弧(即>=180 度)。R 值总是代 表距离运动起始点的距离。R 指令并不是运动模式指令。所以要通过该方式指定圆心 必须在每一条指令中都有指定,如果没有指定半径,则将自动转成直线插补。

3

例子: CIRCLE2

X20 Y0 R-20

- 四、注意事项
 - 1、复习逐点比较法原理。
 - 2、复习 EM 教学设备运动程序编辑方法,语法结构。
 - 3、注意调整好笔架和电机的位置。
 - 4、复习圆心定位的方法。
 - 5、复习运动程序编制方法。

五、实验内容与步骤

- (一)、直线插补(逐点比较法)
 - 关掉电源,将限位回零线、编码器线及电机动力线连接好,将机箱串口线连接 到计算机上,接上电源线,打开电源开关。
 - 2、 调整笔架位置,按"回原点"键将X、Y轴回至原点。
 - 3、打开计算机,运行 PEWIN 执行软件。
 - 4、在编辑器中编写下列程序。

```
_____
```

close

```
&1
#1->100(2500)x ; 轴比例系数定义,主要是为了更加方便的观察插补过程,所以将
#2->100(2500)y ; 比例系数放大,如果想要得到好的插补效果,可定义成#1->x
```

open prog 7

open prog /	
clear	
linear	
inc	
p101=0	; 初始化步插补总步数计数器
p102=0	;初始化偏差值
p103=13	; 插补终点横坐标值
p104=8	; 插补终点纵坐标值
while (p101!>p103+p104-1) ;终点判别(是否到插补终点)
if (p102!<0)	;偏差判别(若P102大于等于0表示刀具在直线下方或直线上)
p102=p102-p104	; 计算新的偏差值(F _{i+1} =F _i y _a)
p101=p101+1	; 步数计数器加一
x 4	; X方向进给
else	; 偏差判别(若P102小于0表示刀具在直线上方)
p102=p102+p103	; 计算新的偏差值(F _{i+1} =F _i +x _a)
p101=p101+1	; 步数计数器加一
y 4	; Y方向进给
endif	

4

endwhile

close

- 5、下载该运动程序。
- 6、在终端窗口键入"B7R"指令执行该运动程序,观察实验结果。

5

- 6、改变进给步长(即X、Y轴所走的距离),重做一次实验。
- (二)、自己编成完成圆弧插补

六、实验结果分析

- 1、比较直线圆弧插补实验结果分析,得出结论。
- 2、画出所插补的直线和圆弧。

七、思考题

- 1、简述逐点比较法插补原理。
- 2、目前常用的两类插补方法有何不同?